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Annotation: Robots have become ubiquitous in our daily lives, serving a variety of 

purposes in various forms. As their prevalence increases, so too does the need for reliable route 
planning algorithms to ensure safe and efficient navigation without collisions. This has led to a 
surge of interest in the study and refinement of path planning algorithms, with efforts focused on 
improving their effectiveness and performance. To shed light on this important topic, this paper 
aims to provide a comprehensive survey of four common path-planning algorithms for robots. 
Beginning with an overview of mobile robots and route-planning algorithms, we delve into the 
fundamental principles of each algorithm, exploring their relative advantages and disadvantages, 
and their respective applications. This survey aims to provide a comprehensive understanding of 
the state-of-the-art in path-planning algorithms for mobile robots and assist researchers and 
practitioners in selecting the most appropriate algorithm for their applications. 
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1. Introduction 

Algorithms have proven to be the most effective tools for addressing a wide range of issues related 
to robot mobility, particularly in the realm of path planning and navigation. In diverse 
environments, whether stationary or mobile, with or without fixed obstacles, algorithms have been 
instrumental in improving and optimizing robot paths. These algorithms have been employed in 
standalone form or in conjunction with other algorithms, resulting in remarkable performance 
improvements across a variety of scenarios. Notably, a number of studies have demonstrated the 
successful optimization of robot path, energy consumption, and processing time using a variety of 
algorithms. Among the most popular algorithms are the particle swarm algorithm, the ant colony 
algorithm, the bee colony algorithm, and the genetic algorithm. These algorithms are highly 
favored due to their ease of use, rapid convergence, and numerous other advantages. As such, they 
are widely utilized in practice and continue to drive innovation in the field of robotics. Numerous 
studies have been conducted on path planning using particle swarm optimization (PSO). Zhang et 
al. [1] presented a more effective PSO for path planning for mobile robots. The efficacy of the 
method was demonstrated through simulations. Gong et al. [2] proposed a global path planning 
strategy using a multi-objective PSO, which was also confirmed to be effective through 
simulations. To address path planning for unmanned aerial vehicles, an enhanced chaos-based 
PSO was proposed [3], which outperformed conventional PSO, particularly in a three-dimensional 
setting. Fitness-scaling adaptive Chaotic PSO was suggested [4] to address path planning for 
unmanned combat aerial vehicles. Liu et al. [5] introduced important technology for radiation 
environment path planning based on PSO, which was shown to be effective through experiments. 
Yusof et al. [6] proposed a predetermined waypoints method for mobile robot navigation, while 
Tang X. et al. [7] used a multi-agent particle filter to handle mapping and localization problems in 
uncharted areas. PSO was used to reduce computation and maintain more consistent convergence 
characteristics. Atyabi et al. [8] developed the Area Extended PSO (AEPSO) to deal with time-
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dependent and dynamic constraint issues in mobile robot navigation, which was effectively used 
in bomb defusing and search and rescue of survivors. Tang et al. [9] used PSO to address 
cooperative motion route planning in complex environments, taking into consideration fault 
tolerance of the suggested approach with multibody system dynamics. Chen et al. [10] used a 
multi-category classifier to construct a human expert control approach with the ability to learn in 
uncertain environments. The PSO was employed to achieve higher precision quickly. Local search 
PSO algorithm [12], fusion of different intelligent optimization algorithms [13], and adjusting the 
plan [11] were also used to improve the PSO method, resulting in benefits such as quick 
convergence and global optimization. Back-propagation neural network models based on global 
best adaptive mutation PSO were developed [14] to estimate welding penetration based on 
welding characteristic parameters, while the discrete elite PSO technique was researched to 
successfully find the shortest collision-free welding path [15]. Wen et al. [16] altered ant colony 
optimization (ACO) to improve overall path planning, while Wang et al. [17] studied global path 
planning using ACO. Zhu et al. [18] developed an algorithm to improve ACO performance in 
mobile robot path planning. Gao et al. [19] presented an enhanced ACO for the three-dimensional 
path planning of mobile robots, while a chaotic ant colony system was proposed to address the 
problem of mobile robot path planning, which was shown to be superior to the conventional ant 
colony system according to simulation data. The artificial bee colony algorithm has also been used 
for feature selection and has been effectively used to solve practical issues in various fields [20-
36]. Despite its success, there is still room for improvement, particularly with regard to 
dimension-dependent problems. To address this, a coevolution framework was suggested [37, 38] 
that can successfully differentiate the dependent and independent dimensions groups. Several 
studies have been conducted to demonstrate the efficiency of genetic algorithms in enhancing the 
trajectory and performance of robots. For instance, Maine et al. [39] modified the route planning 
for a mobile manipulator using GA. Liu et al. [40] introduced a GA with two layers of encoding to 
flatten the route layout and improve the capacity to express symbols. Pehlivanoglu et al. [41] 
proposed a vibrating genetic route planning method. Xu et al. [42] developed an Optimizer to 
design the path for unmanned aerial vehicles, and simulation results indicate that the proposed 
method meets the criteria for computing efficiency and solution precision. Tsai et al. [42] 
proposed PEGA (parallel elite genetic algorithm) for navigation by autonomous robots, and the 
outcomes demonstrate its efficacy. Tuncer et al. [43] presented an enhanced GA for the dynamic 
route planning of mobile robots. Qu et al. [44] suggested a better GA with co-evolutionary 
technique to address the global path planning issue for numerous mobile robots, and simulations 
show that the strategy is effective. Fei et al. [45] proposed a customized GA for the ideal path 
planning of mobile robots, while Shorakaei et al. [46] employed a parallel GA to plan the best 
cooperative path for unmanned aerial vehicles, and numerous simulations demonstrated its 
efficacy. Genetic algorithms are now widely used in mobile robots [47-51], scheduling issues [52-
55], sensor networks [56], building trade systems [57], logistics [58, 59], automobile industry 
[60], and cloud computing [61-64]. The references already mentioned frequently highlight the rise 
in GA convergence speed and application adjustments that aid the case study at hand. 

2. Partial swarm optimization (PSO) 

In 1995, PSO was proposed by Kennedy and Eberhart as a new idea that belongs to the 
evolutionary computing methods [65]. Researchers have been inspired by the social behavior of 
certain creatures such as bird migration and fish schooling to investigate how inter-species 
cooperation can affect group objectives. This has led to the study of bird dynamics drawings. The 
problem space of a PSO system is initially populated with a random collection of solutions, which 
coexist and collaborate simultaneously in order to find the best solution. Each potential solution 
candidate explores the problem space in search of a "specific" solution (similar to how a flock of 
birds would search for food). Over time, the particle is influenced by its neighboring particles. 
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Swarm optimization is employed to reduce the total route planning time while avoiding obstacles. 
Swarm robots were originally developed to enable a group of mobile robots to achieve a common 
goal. The concept of optimizing to achieve a goal by overcoming a challenging condition is 
introduced in order to tackle more complex challenges. Recently, these methods have been applied 
to autonomous mobile robot applications to address issues with parameter estimates, machine 
learning tasks, work scheduling, and reduced responsiveness during travel. To provide an optimal 
outcome that is more efficient, there are several obstacles in the workspace that must be overcome 
for robot motion planning. 

2.1. The following key terms are used in particle swarm optimization (PSO): 

 Particles: Refers to any potential solution. 

 Population (N): The group of all particles. 

 Search Space ([a,b]): Represents all possible solutions to the problem. 

 Each particle is characterized by two properties: position (xi) and velocity (vi). 

 Additionally, each particle keeps track of its personal best (pbest) and the global best (gbest). 

Note: pbest refers to the individual's best position or location achieved thus far, whereas gbest 
pertains to the best position attained by any individual in the entire population during the search 
process in the solution space. Global best  

2.2 Three stages are considered in PSO: 

 Initialization  

 Initial population (number of particles ) 

 Initial position ( ) and initial velocity( ) 
 Assign , and (based on the objective function) 
 Update 

 Velocity and position of each particle are updated. 

Velocity           (1) 

 
 

Inertia weight is a proportional agent that is related with the speed of last inertia weight is a 
proportional agent that related with the speed of last improvement; the value of is assumed to 
vary linearly from 0.9 to 0.4. And are the cognitive (individual) and social (group) learning 
rates. And are uniformly distributed random numbers in the range 0 and 1    

    

 
 If  
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Position  

 Fitness function  

 The and are updated. 

better  

better  

 

 

 

 

 

 

 

 

 

 

 

Table (1) cases of  

 
 Termination  
 The steps of PSO algorithm are iteratively repeated until the maximum number of generations 

is reached or a termination criterion is met.  
 Convergence: is the case where the positions of all particles converge to the same Set of 

values, the method is assumed to have converged. 

2.3. Parameters required from user 
 Population size  
 Initial position and initial velocity   
 Inertia weight ( ) 
 The individual and social cognitive ( and )  
 Uniformly distributed random numbers ( and ) in the range (0.1) 

 Termination criteria (i.e. number of iteration ) 

2.4. Pseudo code  

Remark Better than  Better than  Cases 
Not update  and    1 

update  and not update   √ 2 
update  and  √  3 

Case 2: Min 

x = 2        = 25 

3        = 30 

 

= 7         = 20 

 

 

 

 

 

Case 1: Min 

x = 5       = 50 

 3        = 30 

 = 7        = 20 

 

Case 3: Min 

x = 9        = 10 

3        = 30 

 

= 7         = 20 
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2.4.1. input 

 Objective function (fitness function). Upper bound ( ) and lower bound ( ), population size 
( ), inertia weight( ) individual and social captive (  and ). Number of iteration   

2.4.2. Initialization 
 Initialize random position ) mod velocity ) within search space boundary 
 Assign and (based on the objective function) 

2.4.3. Loop 

 For  = 1:  
 For  = 1:  
 Update velocity  

 Update position  

 Check within boundary. If &if  =  

 Evaluate the objective function  . 

 Update and :: if better & if better  

 If there is no convergence of the current solution &if  go to Loo 

2.4.4. Print  and  

3. Ant colony optimization algorithm (ACO) 

The ACO is proposed by Marco Dorigo in 1992[67-69]. The basic principle of the ACO is each 
ant will release a secretion on the path it walked as a reference and will also perceive the 
secretions released by other ants while it is searching for food. This secretion is usually called 
pheromone. Under the action of pheromones, the ant colony can communicate with each other and 
choose paths. When the pheromone on a path is more than other paths, the ant colony will 
spontaneously move to this path, and release more secretions during the movement, so that the 
concentration of the pheromone becomes higher to attract the latter ants which forms a mechanism 
of positive feedback. After a period of time, the concentration of pheromone on the shorter path is 
getting higher and higher, then the ants that choose it are gradually increasing, while the 
pheromones on other paths are gradually reduced until there is no. Finally the whole ant colony is 
concentrated in the optimal path. The process of ant foraging is similar to the path planning of 
robots. As long as there are enough ants in the nest, these ants will find the shortest path from the 
nest to the food to avoid obstacles. The principle of ant colony searching for food is shown in 
Figure1. The ACO has not only the global search ability of the population, but also has synergy 
between individuals. It can find a better path, even if the complete information of the environment 
is not known. However, in the early stage of the algorithm, the convergence speed is slow and it 
takes a lot of computation time. It is prone to prematurity. When an ant finds the obstacles in the 
middle it neglects and find any alternate path for reaching a goal, likewise an autonomous mobile 
robot involves in searching a path when any interruption occurs in the middle. The artificial ant 
mobile robot involves in finding a path faster by following a previous ant which produces more 
pheromone in order to find a shortest path. Likewise, in autonomous navigational mobile robots, 
each robot communicates with each other using signal strength instead of a pheromone. The 
mobile robot senses the signal from the previously travelled robot and follows that path for 



Nexus : Journal of Innovative Studies of Engineering Science ( JISES ) 
Volume: 02 Issue: 04 | 2023     ISSN:  2751-7578 
http://innosci.org/ 

 

133 | Page 
 

reaching a goal by using a sensor. So, the time consuming is reduced and also obstacles are 
detected as soon as possible. 

The principle of ant colony searching for food )(Fig. 1 

The path planning algorithm starts from a Source point  (starting point) and ends at Xg (Goal 
point). If a robot moves from a source to an adjacent or new point is denoted as Xn (new point) 
and it is calculated by summing up the current position and step size with dimension angle (ϴ) as 
follows: 

 

The flag value is set for encountering obstacles while travelling and if it so moves three steps 
back. The process of bypassing the obstacles in the navigational robot is achieved, which is far 
better using an ACO algorithm by overcoming the failures like allocation of tasks over time.  

3.1. The principal method of ACO is as per the following: 

 Produce ant(s) and looping for each ant until and unless the whole task is completed. 

 Store pheromone on visited states/sites covered by ant(s). 

 Daemon exercises and dissipation of pheromone. 
For taking care of multi-objective arranging issues within the sight of obstruction, the ant colony 
is joined with a sample-based location-to-location path planning method. Execution is assessed by 
quantitative examination with two existing sample-based methods. The ACO method, offering a 
trade-off between arrangement quality value and speediness. It is the prevalent decision given the 
physical parameters of robotics path planning. 

3.1.1. Key Terms 

 Ants : Any possible solution. 

 Population -Group of all ants.  

 Search Space [ ]- All possible solutions to the problem.  

 Search Space is divided by step size  

 Pheromone trail  

 Scaling parameter  

 Evaporate rate  

3.1.2. Four phases are considered in ACO 
 Build tours 



Nexus : Journal of Innovative Studies of Engineering Science ( JISES ) 
Volume: 02 Issue: 04 | 2023     ISSN:  2751-7578 
http://innosci.org/ 

 

134 | Page 
 

 From the home node, ants start travelling through the various paths 
and end at the destination node in each iteration (discrete values of 
design variables) 

 Find the cumulative probability ranges associated with different 
discrete values based on its probabilities. 

 The specific discrete values chosen by ant will be determined 
using the roulette-wheel selection. 

 Generate  random numbers  in the range (0,1), one for  

Determine the discrete value by ant  for variable as the one for which 

the cumulative probability range includes the random numbers . 

3.1.3. Four phases are considered in ACO 

 Deposit and update trail - Once the path is complete, the ant 
deposits some pheromone on the path. 

 Evaluate the objective function values of each ant 

 Determine the best  and worst  objective function of the 
discrete value among ants 

 Update the pheromone 

 Best ants: reinforcement the pheromone of the best path by: 

         best objective function 

                     worst best objective function 

 Other ants: evaporates the pheromone of other paths by: 

     scaling parameter 

                           → evaporate rate 

3.1.4. Four phases are considered in ACO  

 Termination 

 The steps of ACO algorithm are iteratively repeated until the maximum number of iteration is 
reached or a termination criterion is met.  

 Convergence: is the case where the positions of all particles converge to the same set of 
values, the method is assumed to have converged. 

3.2. Pseudo code 

3.2.1. Input 

 Objective function (fitness function), upper bound ( ) and lower bound ( ), population size 
( ), number of iteration , scaling parameter , evaporate rate , step size  (or number of 
discrete value  ) 

3.2.2. Initialization 

 Initialize all discrete values of design variables equal amounts of pheromone  

3.2.3. loop: 

Figure (2) Cumulative probability 
for discrete values of design 

variables 
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 For  
 Find probability to select discrete values of design variables is: 

      (4) 

 Find the cumulative probability ranges associated with different discrete values based on its 
probabilities.(design roulette-wheel) 

 For  

 Generate a random numbers r 
 Find corresponding discrete value 

 Evaluate the objective function  

 Determine the best and worst objective function of the discrete value among ants 

 Update best path by.   

and other paths by. 

           (6) 

 If there is no convergence of the current solution & if >  go to Loop  

3.2.4. Print and  

 

 

 

 

 

 

 

 

 

 

 

Figure (3)ACO pseudo code and flowchart for path planning of robot\ by Brand et al. [70] 

4. Bee Colony 

4.1. Bees in the Nature  

The ABC algorithm is a swarm-based intelligent approach inspired by the activities of honey bees 
(Figure 20) in search of food and is proposed by Kharaboga [71] .Self-organization of bees is 
based on a few relatively simple rules of individual insect's behavior. In spite of the existence of a 
large number of different social insect species, and variation in their behavioral patterns, it is 
possible to describe individual insects' as capable of performing a variety of complex tasks [72]. 
The best example is the collection and processing of nectar, the practice of which is highly 
organized. Each bee decides to reach the nectar source by following a nestmates who has already 
discovered a patch of flowers. Each hive has a so called dance floor area in which the bees that 
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have discovered nectar sources dance, in that way trying to convince their nestmates to follow 
them. If a bee decides to leave the hive to get nectar, she follows one of the bee dancers to one of 
the nectar areas. Upon arrival, the foraging bee takes a load of nectar and returns to the hive 
relinquishing the nectar to a food storer bee. After she relinquishes the food, the bee can (a) 
abandon the food source and become again uncommitted follower, (b) continue to forage at the 
food source without recruiting the nestmates, or (c) dance and thus recruit the nestmates before the 
return to the food source. The bee opts for one of the above alternatives with a certain probability. 
Within the dance area, the bee dancers "advertise" different food areas. The mechanisms by which 
the bee decides to follow a specific dancer are not well understood, but it is considered that "the 
recruitment among bees is always a function of the quality of the food source" [72]. It is also 
noted that not all bees start foraging simultaneously. The experiments confirmed, "new bees begin 
foraging at a rate proportional to the difference between the eventual total and the number 
presently foraging". 

4.2. Bee Colony Optimization (BCO) 

The basic idea of designing BCO is to compose the multi-agent system (colony of artificial bees) 
that will search for good solutions of a variety of combinatorial optimization problems. The 
artificial bees explore the principles used by honey bees for the period of nectar collection process. 
In other words, BCO principles are gathered from natural systems. Artificial bees explore through 
the search space, looking for the feasible solutions. In order to discover better and better solutions, 
artificial bees collaborate and exchange information. via collective knowledge and sharing 
information among themselves, artificial bees focus on more promising areas, and gradually 
discard solutions from the less promising ones. Little by little, artificial bees jointly generate 
and/or improve their solutions. The BCO search is running in iterations until some predefined 
stopping criteria is satisfied. Population of agents (artificialbees) consisting of B bees 
collaboratively searches for the optimal solution. Every artificial bee generates one solution to the 
problem. There are constructive [73-76] and improvement version [77](submitted for publication) 
of the BCO algorithm. In constructive BCO each bee adds a (different) new component to the 
previously generated partial solution, 
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while in the improvement version of the BCO bees modify some components of the complete 
solution in orderto enhance them. The algorithm consists of two alternating phases: forward pass 
and backward pass. During each forward pass, every artificial bee explores the search space. It 
applies a predefined number of moves (NC), which construct and/or improve the solution, 
yielding a new solution. NC is a parameter used to define the frequency of information exchange 
between bees. Its value depends on each particular problem characteristics. If NC takes small 
values, then the search process is intensified, since each newly generated part consists of only a 
few components. The difference between solutions, generated by different bees, is minor. On the 
other hand, if NC is large, each bee adds more components to its partial solution, thus introducing 
variety among different solutions. Suppose we have B bees, namely Bee 1,Bee 2,. . .,Bee B which 
participate in the decision-making process on n entities. One of the possible situations which may 
arise after the first forward pass in the case NC = 3 and B = 3 is illustrated in (Fig. 7). Upon 
obtaining new partial solutions for each bee, the second phase, the so-called backward pass, starts 
(Fig. 5). During the backward pass, all bees share information about their solutions. In nature, bees 
would perform a dancing ritual, which would inform other bees about the amount of food they 
have found, and the proximity of the patch to the hive. In the search algorithm, the quality of each 
generated solution is determined, i.e. the current value of the objective function is calculated. 
During the backward pass, every bee decides, with a certain probability, whether it will stay loyal 
to its solution or not. Contrary to bees in nature, artificial bees that are loyal to their generated 
solutions are at the same time recruiters, i.e. their solutions are considered by other bees. Once the 
solution is abandoned the bee becomes uncommitted and has to select one of the advertised 
solutions. This decision is taken with a probability, such that better advertised solutions have 
greater opportunities to be chosen for further exploration. In such a way, within each backward 
pass all bees are divided into two groups (R recruiters, and the remaining B R uncommitted bees) 
as shown in (Fig. 6). Values for R and B R change from one backward pass to another. Let us 
assume that after comparing all generated partial solutions Bee 3 from the previous example 
decided to abandon its solution, and join Bee 1. The resulting situation is presented in (Fig. 4). 
Bee 1 and Bee 3 ‘‘fly together’’ along the path already generated by Bee 1. In practice, this means 
that the partial solution generated by Bee 1 is associated (copied) to Bee 3. When they ‘‘reach the 
end of the path’’, they are free to make an individual decision about the next constructive step. 
This actually means that each of them will add different components to the same partial solution. 
Bee 2 will keep its partial solution without being chosen by any hive-mates and will perform a 
new constructive step independently. The two phases of the search algorithm, namely the forward 
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and backward passes, alternate in order to generate all required complete solutions (one for each 
bee). At that stage the best solution is determined and an 
iteration of BCO is completed. The BCO algorithm runs 
iteration by iteration until a stopping condition is met. A 
possible stopping condition could be, for example, the 
maximum number of iterations, the maximum number of 
iterations without the improvement of the objective 
function, the maximum allowed CPU time, etc. In the 
end, the best solution found is reported as the final one. 
In this paper we apply the improvement version of the 
BCO algorithm. The BCO algorithm parameters whose 
values need to be set prior the algorithm execution are as 
follows: B – the number of bees involved in the search, 
IT – the number of iteration, NP – the number of forward 
and backward passes in a single iteration, NC – the 
number of changes in one forward pass, S – the best 
known solution[78] As shown in the fig.(8) 

4.3. pseudo code of the BCO algorithm: 

procedure BCOi (in B, IT, NP, NC, out S) 

for i = 1 to B do 

Determine an initial solution for the i-th bee. 

Evaluate the solution of the i-th bee. 

S the best solution of the bees. 

for j = 1 to IT do 

for i = 1 to B do 

the bee i Set an initial solution. 

for k = 1 to NP do 

for i = 1 to B do 

for r = 1 to NC do 

Evaluate modified solutions generated by possible changes of the i-th bee solution. 

By roulette wheel selection choose one of the modified solutions. 

for i = 1 to B do 

Evaluate solution of the i-th bee. 

for i = 1 to B do 

Make a decision whether the i-th bee is loyal. 

for i = 1 to B do 

if the bee i doesn’t loyal then 

Choice one of the loyal bees to be followed by the i-th bee. 

if the best solution of the bees better then solution S 

S the best bee’s solution. 

 

Figure (8) proses flowchart of basic  GA  
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Target node Hopping nodes Starting node 

Fig. 10. Decimal coded genes of a chromosome [80] 

5. Genetic Algorithms (GA)  

GA is an optimization tool that is most commonly used to generate high quality solutions for 
combination optimization problems and search problems. The GA is inspired from the process of 
natural selection and relies on evolutionary operators like mutation, crossover and selection. The 
GA starts with no knowledge of correct solution and entirely depends on the responses of the 
environment and the above mention evolutionary operators and arrive at the best solution[79]. are 
parallel and global search technique that emulates natural genetic operators. As it simultaneously 
evaluates many points in the parameter space, it is more likely to converge to the global 
optimal[80] . Many path planning methods use a grid-based model to represent the environment 
space, leading to two possible representations: (i) through an orderly numbered grid, as shown in 
Fig.(9), or (ii) through the (x,y) coordinates plane[80]. A chromosome represents a candidate 
solution for the path planning problem. A chromosome representing a path encodes a starting 
node, a target node and the nodes through which the mobile robot travels. These nodes, or steps, in 
the path are called genes of the chromosome. A valid path consists of a sequence of grid labels 
which begins at the starting node and ends at the target node, as shown in Fig. (10) .The initial 
population is generally generated randomly. Thus, some of the generated chromosomes may 
include infeasible paths intersecting an obstacle. An optimal, or near optimal, solution can be 
found by genetic operators, even though the initial population includes infeasible paths. However, 
this reduces the search capability of the algorithm and increases the time to find the solution. 
Additionally, crossover of two infeasible chromosomes may generate new infeasible paths. To 
solve this problem, each chromosome must be checked whether it intersects an obstacle, when 
generating the initial population. If it does, the intersected gene on the chromosome is changed 
randomly, until a feasible one is found . The optimal path may be the shortest one, or the one 
requiring the least time or less energy to be traversed. Generally, in path planning problems, the 
objective function is considered as the shortest path. In ,the objective function value of a 
chromosome used in the GA is given by Equations 7 and 8: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 31 62 66 99 

Fig. 9. Example of the orderly numbered grid 
environment representation [80]. 
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                        (7)
 

                                                                            

 

being,  the fitness function, pi the ith gene of the chromosome, the length of the chromosome, d 
the distance between two nodes, xi and yi the robot current position, and  and  the robot 
next position. The direction of the robot path is given by equation 9 [80]: 

                                                   (9) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

The objective function value is defined as the sum of distances between each node in a path. If 
there is an obstacle in the robot path, a penalty is added to the objective function value. The 
penalty value should be greater than the maximum path length on the environment. In order to 
find an optimal path, the algorithm searches for the chromosome with the least value for the 
objective function [80]. The main principle of the GA is that the best genes on the chromosomes 
should survive and be transferred to new generations. A selection procedure needs to be done to 
determine the best chromosomes. This process consists in the following three steps [80]: 

 Objective function values of all chromosomes are computed 

 Fitness values are assigned to chromosomes according to their objective function values. 
In[80], the rank based fitness assignment is used instead of the proportional assignment 
method. This prevents a few better chromosomes to be dominant in the population. 

 Chromosomes are selected according to their fitness values and then  

placed into a mating pool to produce new chromosomes. Normally, crossover combines the 
features of two parent chromosomes to form two offsprings. In Fig.11, single-point crossover 
operator is illustrated, and the genes of the two “parent” chromosomes after the crossover point 

Fig.11. Single-point 

for feasible paths 

for infeasible paths )8(  

 

Fig.12 Infeasible path [80] 
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are changed [80]. All candidate chromosomes in the population are subjected to the random 
mutation after the crossover operation. This is a random bit-wise binary complement operation or 
a random small change in a gene, depending on the coding of chromosomes, applied uniformly to 
all genes of all individuals in the population, with a probability equal to the mutation rate. The 
mutation operation increases the diversity of the population and avoids the premature 
convergence. It expands the search space to regions that may not be close to the current 
population, thus ensuring a global search [80]. In conventional GA, random mutation is the most 
commonly used operator. However, random mutation can cause generation of infeasible paths. 
Even though a chromosome is feasible before the mutation operation, the new node changed by 
the mutation may have an obstacle and therefore it constitutes an infeasible path (see Fig. 12). 
This makes the optimization slower and increases the number of generations . To overcome this 
problem, several studies concerned with the improvement of mutation operation have been done in 
the literature. The authors of those studies, as well as the method proposed by each author, are 
described in[80].  

Table (2) The advantages and disadvantages for ACO, PSO,ABC and GA algorithms 

Algorithm Advantages Disadvantages 
 
 
 
 

ACO[81, 82] 
 

 Able to cluster and build routes  
 Simple implementation 
 Easily parallelized for concurrent 

processing 
 Derivative free 
 Efficient for TSP and similar 

problems. 

 It is time-consuming to lay pheromone 
on trails used by ants as a 
communication medium  

 Able to fall easily into the trap of local 
optimum Probability distribution 
changes by iteration. 

 Time to convergence uncertain (but 
convergence is Guaranteed) 

 
 
 

PSO[83-87] 

 Very easy to implement  
 The training speed is fast  
 the efficiency is high, 
 the algorithm is simple 

 Has problems in parameter selection 
due to its poor exploration 

  It is easy to fall into local optimal 
solution  

 poor handling of discrete optimization 
problems 

 
 
 
 

GA ]87 ,88[  

 It has an ability to prevent from fall 
into a local optimum with the help of 
mutation  

 The convergence speed is fast  
and the versatility is strong 

 parallelism 
 travelling in a search space with more 

individuals so they are less likely to 
get stuck in a local extreme like some 
other methods 

 easy to implement 
 have some GA, just write new 

chromosome to solve another problem 
 same encoding - change the fitness 

function 

 The best solution very hard to obtain 
because GA easily falls into premature 
convergence.  

 It is more complex, 
and depends on the initial population 

 Disadvantage 
 computational time 
 slower than some other methods 
 choosing encoding and fitness function 

can be difficult 
 But with today's computers it is not so 

big problem 
 
 

 
 
 

ABC[87] 

 The global search ability is strong and 
the convergence speed is fast 

 Few control parameters 
  Fast convergence 
 Both exploration & exploitation 

 it is easy to fall into the local optimum, 
and the search speed slows down later 

 Search space limited by initial solution 
(normal distribution sample should use 
in initialize step 
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Table (3) application areas for GA,ABC,ACO and PSO algorithms 

algorithms application areas 
 
 
 

ACO 
[69, 89-97] 

 Routing/ Traveling salesman  
 Scheduling/ Single machine  
 Subset / Maximum independent set  
 Assignment and layout / Quadratic assignment] 
 Machine learning / Bayesian networks  
 Bioinformatics / Shortest common super sequence  
 Multiobjective/ Portfolio selection  
 Continuous / Test problems  
 Dynamic/ Dynamic TSP  

 
 
 
 
 

GA[98] 

 Optimization  
 Economics  
 Neural Networks  
 Image Processing  
 Vehicle routing problems  
 Scheduling applications  
 Machine Learning 
 Robot Trajectory Generation  
 Parametric Design of Aircraft  
 DNA Analysis  
 Multimodal  
 Traveling salesman problem and its applications  

 
 
 

PSO[98] 

 Scheduling 
 Shortest Common Sequence 
 Constraint Satisfaction 
 2D-HP protein folding Bin Packing Machine Learning 
 Classification Rules 
 Bayesian networks 
 Fuzzy systems 
 Network Routing 
 Connection oriented network routing Connection network routing 
 Optical network routing 

ABC[94] 
 
 
 
 
 

 

 comparative analysis  
 modified versions 
 electric power systems 
 parallel and grid computing 
 data clustering and image analysis  
 computer science applications  
 signal processing and communication system 
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Table (4) outlining the common oprators and control parameters for genetic algorithms 
(GA),artificial bee colony (ABC), ant colony optimization (ACO), and particle swarm 

optimization (PSO) algorithms [99]: 

 

6. Hybrid and improved algorithms 

There are improved algorithms and others called hybrids that have high effectiveness as well and 
have proven their worth in solving difficult problems, as more algorithms can be integrated to 
improve the quality and efficiency of the solution in[100] , And the optimization strategy can be 
applied to optimize the trajectory of the welding robot. The shortest path length, collision-free 
path, and welding deformation control were considered to improve the welding path. In 
[101](PSO_ALS algorithm) feature selection problem, a global best solution within the search 
space and an adaptive local search method was presented in exploring the local search space. 
Using the adaptive local search technique improves the results of the proposed algorithm. 
PSO_ALS shows superior performance over other similar methods. And in [102]it was found that 
constrained particle swarming optimization (CPSO) works better than other meta-methods in 
unknown environments. As well as in [103] the experimental results show the promising behavior 
of the proposed method in increasing classification accuracy and optimal selection of traits using 
the hybrid algorithm (AC-ABC). And in [104] the BCO algorithms are described which we call 
Bee System (BS) and Fuzzy Bee System (FBS). In the case of FBS, agents (artificial bees) use 
approximate thinking and fuzzy logic rules in their communication and behavior. In this way, FBS 
is able to solve Deterministic combinatorial problems, as well as combinatorial problems that are 
characterized by uncertainty.in[105] the shortest collision-free paths are considered as the criteria, 
genetic algorithm and particle swarm optimization algorithm are combined to realize welding 
robot path optimization. In [106]for navigation of multiple mobile robots in the real world. They 
modified the form of PSO and Darwinian PSO (DPSO) system for obstacle avoidance and mutual 
communication issues. They found that in a system of 12 physical robots the efficiency achieved 
was up to 90% in a sense of maximum communication distance and global optimum.In literature, 
ACO and ABC have been widely used for optimizing the selection of features in problems like 
face recognition, high dimensional gene expression, speech segments classification, texture 
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classification, medical diagnosis, text mining and other data mining applications [21-24, 107-113]. 
In applications that involve ACO, either the actual form or variant forms of ACO like ACO with 
Support Vector Machine, ACO with Neural Networks ACO with Fuzzy Logic have been 
attempted[22-24]. Also, ACO hybridized with other SI algorithms such as ACO-PSO Hybrid, 
ACO-GA Hybrid and ACO-Cuckoo Hybrid have been experimented for FS optimization [108-
111]. Same is the case for ABC, it has also been applied in its actual and modified forms [114-
116]. So far, only one hybrid form of ABC with other SI algorithm, ABC-DE Hybrid has been 
tried out for FS [113] , Also, both the algorithms show boosted performance, when hybridized 
with other SI algorithms than being standalone [108-111, 113].In [117]The double global 
optimum GA-PSO algorithm it can obtain the shortest collision-free welding path effectively and 
improve the welding efficiency as a result. The diversity of particles and global search ability were 
enhanced after another global solution from the GA was considered. Simulation results confirmed 
that the algorithm is better than the basic GA and PSO algorithm, and it can be applied to welding 
robot path planning. 

7. Discussion 

It is clear from the research that there is a high efficiency of these algorithms in many areas that 
were mentioned according to their applications, and the most important thing is to use the 
algorithm according to its characteristics and in the applications that were mentioned to get high 
efficiency. This paper presented a review of the four algorithms (ABC, ANO, PSO, GA). The 
article discussed these algorithms and explained the advantages and disadvantages of each of 
them, as well as reviewed the applications in which they were highly successful as basic, 
improved, or hybrid algorithms. From this review paper, we can learn about the most appropriate 
and best algorithms for future work, and all mentioned algorithms can improve performance by 
hybridizing algorithms by combining two or more of them. These algorithms are able to solve the 
most difficult problems facing robots path planning in particular and other problems in general. 
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