

Surface Morphology of Nisi₂/Si Films Produced By Solid-Phase Epitaxy

N. M. Mustafoeva

Karshi Institute of Irrigation and Agrotechnology, 180003 Karshi, Uzbekistan

A. K. Tashatov Karshi State University, 180003 Karshi, Uzbekistan

N. M. Mustafaeva, X. J. Mavlonova

Karshi Institute of Engineering and Economics, 180003 Karshi, Uzbekistan

Abstract

The methods of Oje electron spectroscopy, scanning electron and atomic force microscopy were used to study the formation of NiSi₂ epitaxial layers during the deposition of Ni in Si with subsequent annealing. It has been shown that island thicknesses NiSi₂ are formed at thicknesses h <150 Å.

Keywords: NiSi₂ nanofilms, surface structure, Auger electron spectroscopy, solid phase deposition, morphology.

В данной работе приводятся экспериментальные результаты по изучению состава, морфологии и электронной структуры нанопленок NiSi₂, полученных на поверхности Si (111) с использованием метода твердофазного осаждения с последующим отжигом [1-7].

Нанесение пленок Ni на поверхность Si осуществлялась нагревом Ni электронной бомбардировкой. Перед напылением, проволоки из особо чистого Ni обежгаживались в течении 5–6 часов при вакууме не хуже, чем 10^{-5} Па. Скорость напыления пленок определялась предварительно с использованием метода ОЭС в сочетании с отжигами она составляла ~0,5 Å/мин. Напыление атомов Ni, прогрев образцов, исследования их состава и параметров энергетических зон с использованием методов оже-электронной и ультрафиолетовой фотоэлектронной спектроскопии (ОЭС и УФЭС) и измерением интенсивности проходящего через образец света проводились в одном и том же приборе в условиях сверхвысокого вакуума (P = 10^{-7} Па). Морфология поверхности изучалась методами растровой электронной и атомно-силовой микроскопии (РЭМ и АСМ). Напыление Ni различной толщины (от 10 Å до 100 Å) проводилась при комнатной температуре, при этом образовались сплошные аморфные пленки и на границе раздела Ni/Si не наблюдалось заметной взаимодиффузии Ni в Si и Si в Ni.

Предварительно определена температура кристаллизации и образование соединения типа NiSi₂. При малых толщинах (h $\leq 10 - 15$ Å) начиная с T = 750 K происходило полное испарение пленки Ni. В интервале h_{Ni}= 20 - 60 Å после прогрева при T = 800 K в течении 1 часа формировались островковые пленки, а в интервале h_{Ni} = 80 - 200 Å после прогрева при T = 850 - 900 K - сплошные пленки NiSi₂. Дальнейшее увеличение времени отжига не приводило к заметному изменению состава и структуры пленок. При T = 1000 K наблюдался распад пленки на островки и при T = 1100 K – ее испарение. Наши оценки, проводимые с использованием ОЭС в сочетании с травлением показывают, что толщина пленки NiSi₂ в 2,5 – 3 раза больше, чем толщина напыленной пленки Ni. Для исследования

в одинаковых условиях подготовлены 5 образца Si с нанопленкой NiSi₂ разной толщины: 1 – h = 50 Å, 2 – 100 Å, 3 – 150 Å, 4 – 200 Å и 5 – 550 Å.

Рис. 1. АСМ - изображения поверхности Si (111) с пленкой NiSi2 толщиной 50 Å.

На рис. 1 приведены ACM-изображения поверхности Si (111) с пленкой NiSi₂ толщиной~ 50 Å. Видно, что пленка имеет островковый характер. Эти островки имеют форму конуса (или пирамиды) и их высота доходит до 7 – 8 нм. Анализ РЭМ-картин показал, что островки имеют форму многогранника с линейными размерами ~ 0,2 - 0,3 мкм. Расстояние между центрами этих фаз ~ 0.8 - 1 мкм. Как видно из рис. 1 наряду с крупными островками на поверхности формируются множество мелких островков (фаз). Дальнейшее увеличение толщины пленок (времени твердофазного осаждения) не приводило к заметному росту высоты основных островков. При этом наблюдалось увеличение поверхностных размеров крупных островков и увеличение трех размеров мелких островков. В случае пленки NiSi2 с h = 150 Å практически 80 – 85 % поверхности Si покрываются островками NiSi₂. Размеры островков составляют 0,3 - 0,5 мкм. При этом на ДБЭ картине обнаруживаются концентрические кольца характерные для поликристаллических образцов. По-видимому, хотя после прогрева при Т = 800 К происходит кристаллизация пленки, однако кристаллографические направления отдельных кристаллов не совпадают друг с другом [5,6]. Коалесценция островков и образование сплошной пленки происходило при толщине ~ 200 Å. Однако при этой толщине пленки являлись неравномерными и значение hлежала в пределах 100 – 150 Å. Наиболее совершенные однородные эпитаксиальные пленки NiSi₂ образовались при толщине h \geq 200 Å, после прогрева при T = 950 K.

Рис. 2. Зависимость интенсивности *I* проходящего света от энергии фотонов для Si с нанопленкой NiSi₂ толщиной h, Å: 1 – 50, 2 – 200.

На рис. 2 приведена зависимость интенсивности проходящего света *I* от энергии фотонов hv для Si с нанопленкой NiSi₂ с h = 50 Å и h = 200 Å. В случае Si с пленкой NiSi₂ толщиной 50 Å, резкое уменьшение интенсивности проходящего света наблюдается при двух значениях hv. Уменьшение *I* начиная с hv = 0,5 эВ связано с поглощением света на участках покрытых наноостровками NiSi₂, а уменьшение *I* с hv = 1 эВ – на участках, не закрытых NiSi₂. Экстраполяция этих кривых к оси hv показывает, что значение E_g для NiSi₂ ~ 0,6 эB, а для Si - ~ 1,1 эВ. В случае сплошной пленки NiSi₂ значение *I* резко уменьшается до нуля в интервале hv = 0,5 – 0,6 эВ.

Таким образом, на основе анализа экспериментальных результатов можно заключить о том, что в процессе твердофазного осаждения Ni в Si в сочетании с отжигом на поверхности Si формируются эпитаксиальные нанопленки NiSi₂. При толщинах $h \le 150$ Å пленки имеют островковый характер. Из-за близости параметров решетки NiSi₂ и Si на границе NiSi₂/Si не возникает заметного напряжения и следовательно формируется сравнительно узкий переходной слой (50 – 60 Å).

Литература

- 1. Алтухов А.А., Жирнов В.В. Анализ морфологии и стехиометрии пленок CoSi/Si(100), полученных методами ТФЭ и РЭ // Материалы II-го Всесоюзного межотраслевого совещания "Тонкие пленки в электронике": Москва-Ижевск. 1991. С. 15.
- Tashatov A.K., Umirzakov B.E., Tashmukhamedova D.A., Mustafoeva N.M.. "Electronic and Optical Properties of NiSi₂/Si Nanofilms" // Technical Phusics, 2019, Vol.64, No.5, pp. 708-710
- 3. Ташатов А.К., Ташмухамедова Д.А., Нормуродов М.Т., Абдуваитов А.А., Мустафаева Н.М.. "Получение многомлойной наносистемы Si/NiSi₂/Si (111)" // XLIX международной Тулиновской конференции по физике взаимодействия заряженных частиц с кристаллами, Москва 2019 г с.38
- 4. Umirzakov B.E., Tashmukhamedova D.A., Tashatov A.K., Mustafoeva N.M., Muradkabilov D.M. // Effect of the Disordering of Thin Surface Layers on the Electronic and Optical

Properties of Si(111) // Semiconductors, 2020, 54(11), ctp. 1424-1429

- 5. A. K. Tashatov, N. M. Mustafoyeva // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2020, Vol. 14, No. 1, pp. 81–84.
- 6. Umirzakov, B.E., Tashmukhamedova, D.A., Tashatov, A.K., Mustafoeva, N.M. //Electronic and Optical Properties of NiSi2/Si Nanofilms // Technical Physics, 2019, 64(5), crp. 708–710
- 7. А.К. Ташатов, Н.М. Мустафоева, Б.Е. Умирзаков. Формирование нанопленок CoSi₂ на поверхности Si при твердофазном осаждении // 51-й Международной Тулиновской конференции по физике взаимодействия заряженных частиц с кристаллами. Москва 2022 г. с. 152