

Practical Equation of Torque for a Concave Wing Rotor Drive

U. G. Dehkanov, Z. S. Makhmudov

Constructional and engineering institute of Namangan, assistant professor of cathedra "Resistance of materials and mechanic", Namangan Civil Engineering Institute

Q. S. Azamov

Namangan Civil Engineering Institute, Associate Professor of the Department of Strength of Materials and Mechanics, senior lecturer

Abstract: The article presents the equations of the rotor of a wind turbine with a concave wing in such a format that it can be used in practice. It is adapted to obtain results using computer programs.

Keywords: Speed vector, rotor, wings, wind turbine, driving moment, working position, working period wings.

In our previous articles, the basic information for deriving the real equation of the rotor torque was given. Based on them, we will determine the practical equation of the moment generated by the vertical rotor.

Based on the 1st figures, we explained the following 1st table.

1- Fig. To show the rotation of rotornig blades in the period from 00 to 1200.

The conclusion from these figures is that a change in the 1st wing turning angle φ changes the working part of the 2nd wing surface:

In case 1 (Fig. 1(a,b)), the AF part of wing 1 works. The GB part, which passes the flow due to the curvature of the wing, remains a passive part of the wing (Fig. 1(b)).

In case 2 (Fig. 1(B, Γ)), the entire AB surface of the wing works, while the entire AB part of the 1st wing works, the 2nd wing curvature angle starts from α_4^0 to 90⁰, i.e., the surface up to point B works.

In case 3 (Fig. 1(B,Γ)), if the entire AB part of the 1st wing works, the surface of the 2nd wing up to α_5 works.

The entry and exit limits for these states are tabulated, showing whether the lower (from point A) or upper (from point B) section of the wings is in operating position relative to the active and midopen section of the wings in these states.

Situations	From $arphi$	To φ	Working wings
1	0	arc ctg $\frac{1}{\sqrt{3}} \cdot \left(\frac{2}{k} + 1\right)$	1A, 2A
2	$\operatorname{arc}\operatorname{ctg}\frac{1}{\sqrt{3}}\cdot\left(\frac{2}{k}+1\right)$	π/6	1Α, 2ΑΒα ₄
3	π/6	$\operatorname{arc} \operatorname{ctg} \left[\frac{2}{\sqrt{3}} \cdot \left(\frac{d}{d+2a} - \frac{1}{2} \right) \right]$	<i>1Α, 1ΑΑ</i> α ₅
4	$\operatorname{arc} \operatorname{ctg}\left[\frac{2}{\sqrt{3}} \cdot \left(\frac{d}{d+2a} - \frac{1}{2}\right)\right]$	π/3	1A, 2A
5	π/3	π	1A

Table	1.	Defined	intervals	of	cases
Lanc		Dunnu	muu vais	UI.	Cases

Note: In the table, the listed characters are:

1A - 1 - active wing torque; 2A - 2nd active wing;

 $2AB\alpha_4$ – the 2nd partial active wing moment blocking the part of the 2nd wing spread to the angle α_4 from the point B of the 1st wing (Fig. 1(6));

 $2AA\alpha_5$ is the moment of the 2nd partially active wing, which works only from the point A of the 1st wing and the part of the 2nd wing spread to the angle α_5 (Fig. 1(*z*)).

According to the working spans of the wings, we expressed the torque equation as follows: For active wing:

$$\mathbf{M}_{1} = \frac{1}{2} \cdot \mathbf{c} \cdot \boldsymbol{\rho} \cdot \mathbf{h} \cdot \left[\int_{\alpha_{A}}^{\alpha_{F}} (\boldsymbol{\upsilon} \cdot \sin \delta - \boldsymbol{\omega} \cdot \mathbf{r})^{2} \cdot \boldsymbol{r} \cdot d\boldsymbol{r} + k \cdot \int_{\alpha_{G}}^{\alpha_{F}} (\boldsymbol{\upsilon} \cdot \sin \delta - \boldsymbol{\omega} \cdot \mathbf{r})^{2} \cdot \boldsymbol{r} \cdot d\boldsymbol{r} \right]$$
(1)

Here, the AF part of the wing does not work in the range (case 1) when the twist angle is $0 \le \varphi \le \arg \operatorname{ctg} \frac{1}{\sqrt{3}} \cdot \left(\frac{2}{k} + 1\right)$, that is, k=0.

For a partially active wing intercepted from point B of the wing (Figure 1(B)):

$$0 \le \varphi \le \operatorname{arc} \operatorname{ctg} \frac{1}{\sqrt{3}} \cdot \left(\frac{2}{k} + 1\right)$$

$$M_{2B\alpha4} = \frac{1}{2} \cdot \mathbf{c} \cdot \rho \cdot \mathbf{h} \cdot \left[k4 \cdot \int_{\alpha_A}^{\alpha_F} (\upsilon \cdot \sin\delta_1 - \omega \cdot \mathbf{r})^2 \cdot r \cdot dr + k5 \cdot \int_{\alpha_c}^{\alpha_F} (\upsilon \cdot \sin\delta_1 - \omega \cdot \mathbf{r})^2 \cdot r \cdot dr + k6 \cdot \int_{\alpha_c}^{\alpha_F} (\upsilon \cdot \sin\delta_1 - \omega \cdot \mathbf{r})^2 \cdot r \cdot dr$$

$$+ k7 \cdot \int_{\alpha_{4}}^{\alpha_{B}} (\upsilon \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr$$

$$(2)$$
Here, at $0 \le \alpha \le \frac{\pi}{2}$, k4=1; k5=1, k6=0, k7=0.
arc $ctg \frac{1}{\sqrt{3}} \cdot (\frac{2}{k} + 1) \le \varphi \le \pi/6$

$$M_{2Ba4} = \frac{1}{2} \cdot c \cdot \rho \cdot h \cdot [k4 \cdot \int_{\alpha_{A}}^{\alpha_{F}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr$$

$$+ k5 \cdot \int_{\alpha_{G}}^{\alpha_{B}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr + k6 \cdot \int_{\alpha_{4}}^{\alpha_{F}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr$$

$$+ k7 \cdot \int_{\alpha_{4}}^{\alpha_{B}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr + k6 \cdot \int_{\alpha_{4}}^{\alpha_{F}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr$$

$$+ k7 \cdot \int_{\alpha_{4}}^{\alpha_{B}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr$$

$$+ k7 \cdot \int_{\alpha_{4}}^{\alpha_{B}} (\upsilon \cdot \sin \delta_{1} - \upsilon \cdot r)^{2} r \cdot dr$$

$$(3)$$

$$0 \le \alpha \le \frac{9 \cdot \pi}{40}$$
, k4=0, k5=1, k6=1, k7=0; $\frac{9 \cdot \pi}{40} \le \alpha \le \frac{11 \cdot \pi}{40}$ k4=0, k5=1, k6=0, k7=0; $\frac{11 \cdot \pi}{40} \le \alpha \le \frac{\pi}{2}$

$$At k5=0, k5=0, k6=0, k7=1$$

$$\delta_{1} = \delta + \pi$$
For a partially active wing intercepted from point A of the wing:

$$M_{2Aa5} = \frac{1}{2} \cdot c \cdot \rho \cdot h \cdot [k1 \cdot \int_{\alpha_{A}}^{\alpha_{F}} (\upsilon \cdot \sin \delta_{1} - \omega \cdot r)^{2} r \cdot dr + k4 \cdot \int_{\alpha_{G}}^{\alpha_{S}} (\upsilon \cdot \sin \delta_{1} - \omega \cdot r)^{2} r \cdot dr + k3 \cdot \int_{\alpha_{A}}^{\alpha_{S}} (\upsilon \cdot \sin \delta_{1} - \omega \cdot r)^{2} r \cdot dr + k4 \cdot \int_{\alpha_{G}}^{\alpha_{S}} (\upsilon \cdot \sin \delta_{1} - \omega \cdot r)^{2} r \cdot dr$$

$$(4)$$

Here, at $\alpha \leq \frac{9 \cdot \pi}{40}$, k1=0, k2=0, k3=1, k4=0; $\frac{9 \cdot \pi}{40} \leq \alpha \leq \frac{11 \cdot \pi}{40}$ k1=1, k2=0, k3=0, k4=0; At $\frac{11 \cdot \pi}{40} \leq \alpha \leq \frac{\pi}{2}$, k1=0, k2=0, k3=0, k4=1

Here φ is the wing radius is between $\ell = NB$ and *OX* axis. It is taken as $\varphi_2 = \varphi + 120$ for the second wing, that is, equations 5 and 6.

Here OM=d is an open surface, the radius of the wing is NB=l, the coefficient of openness $k = \frac{d}{l}$ is known.

If we bring the angle δ according to our defined equation,

$$\delta = 2 \cdot \operatorname{arctg}_{\gamma} \sqrt{\frac{-A \pm \sqrt{A^2 - \left(\frac{r^2 + C}{r}\right)^2 + B^2}}{\left(B + \frac{r^2 + C}{r}\right)}}$$
(5)

it depends on the coefficients A and B,

A=-2·|0₁0| ·sin(φ-β); B=-2·|0₁0| ·cos(φ-β); C = |0₁0|² -
$$\frac{\ell^2 \cdot (1-k)^2}{2}$$
 (6)

Then for wing 2, the value of its angle δ_1 is $\sin(\varphi-\beta+120^0)$; $\cos(\varphi-\beta+120^0)$ is calculated using expressions.

Case 2.In this case, wing 1 partially occludes wing 2, and this continues until it completely occludes it (Figure $1(\Gamma)$). From the figure,

$$\ell \cdot \sin\varphi = r \cdot \sin(180^0 - \delta_1) \tag{7}$$

Web of Scholars: Multidimensional Research Journal (MRJ) Volume: 01 Issue: 06 | 2022 ISNN: (2751-7543) http://innosci.org

we find that: $\sin \delta_1 = \frac{\ell}{r} \cdot \sin \varphi$, Also $\cos \delta_1 = \sqrt{1 - \sin^2 \delta_1}$ (8)

Here, ℓ- wing radius, R-wing radius of curvature, h-wing height, k-wing opening coefficient and the following expressions are known:

$$\alpha_{3} = arc \cos \frac{2 \cdot d^{2} - R^{2}}{|O_{1}O|^{2} - 2 \cdot R|O_{1}O|} \quad (a) \qquad C = |O_{1}O|^{2} - \frac{\ell^{2} \cdot (1 - k)^{2}}{2}; \quad (d)$$

$$A = -2 \cdot |O_{1}O| \cdot \sin(\phi + 120^{0} - \beta); \quad (b) \qquad r = \sqrt{R^{2} + |OO_{1}|^{2} - 2 \cdot R \cdot |OO_{1}| \cdot \cos(\alpha_{3} + \alpha_{i})} \quad (e) \qquad (9)$$

$$B = -2 \cdot |O_{1}O| \cdot \cos(\phi + 120^{0} - \beta); \quad (c) \qquad r \cdot \sin\delta = \frac{-A \pm \sqrt{A^{2} - 4 \cdot (r^{2} \cdot \cos^{2}\delta - B \cdot r \cdot \cos\delta + C)}}{2} \quad (f)$$

If we put the expressions (5), (6) and (9e) into the equation (9*f*), we get the equation in the form $\alpha_i = f(A, B, C, R, |OO_1|, \alpha_3)$. In this case it will be α_4 or α_5

The purpose of determining the angle α_i is to determine the integral limits when calculating the driving moment of the partially active state of the rotor blade, that is, the part of the blade below the angle α_4 is not in the working state. Based on the structure of the wing structure,

$$0 < \angle AO_1F = \alpha < 40,5^0 = \frac{9 \cdot \pi}{40}$$
 working in the interval,
$$\frac{9 \cdot \pi}{40} < \angle DO_1F = \alpha < 45^0 \text{ and } \angle DO_1G = \alpha < 49,5^0$$
 doesn't work in the meantime,

 $49,5^{0} < \angle \text{GO}_1\text{B} = \alpha < 90^{0} = \frac{9 \cdot \pi}{40}$ taking into account that there are working surfaces, the working surface of a partially active wing now starts at the angle α_4 . The value of the full angle that forms the curvature of the wing is in the range $\alpha_4 \le \alpha \le 90^{0}$. This situation occurs in the range of the turning angle $\operatorname{arc} \operatorname{ctg} \frac{1}{\sqrt{3}} \cdot \left(\frac{2}{k} + 1\right) < \varphi \le 30^{0}$, that is, at 30^{0} , the active wing partially blocks the active wing.

Case 3: In this case, the passive wing (Figure 1(Γ)), which is fully blocked by the active wing, resumes the working state (Figure 1(π)). According to the figure, state 3 lasts from π /6 to 2π /6 turning angle interval of wing 1, at the end of which wing 2 goes into passive state.

su	1-Wing turning angle, φ	α	The angle	moment
tio			forming the	
tua			curvature of the	
Si			wing, α	
1	$0 \le arc \ ctg \frac{1}{2} \cdot (\frac{2}{2} + 1)$	π	k 0=0	M_1
	$0 = \varphi = \alpha r c c r g \sqrt{3} (k + 2)$	2		
		π	k4=1; k5=1,	$M_{2B\alpha4}$
		2	k6=0, k7=0	
2	$arc ctg = \frac{1}{2} \cdot (\frac{2}{2} + 1) \le 0 \le \pi/6$		-	M_1
	$\sqrt{3} \left(\frac{1}{k} + \frac{1}{k} \right) = \frac{1}{k}$	$0 \le \alpha_4 \le \frac{9 \cdot \pi}{2}$	k4=0, k5=1	$M_{2B\alpha4}$
		0_04-40	k6=1, k7=0	
		$\frac{9 \cdot \pi}{\alpha_4} < \frac{11 \cdot \pi}{\alpha_4}$	k4 = 0, k5 = 1,	
		40 40	k6=0, k7=0	
		$\frac{11 \cdot \pi}{\leq \alpha_4 \leq \frac{\pi}{\leq \alpha_4 < \frac{\pi}{\leq \alpha_4 \leq \frac{\pi}{\leq \alpha_4 < \frac{\pi}{\leq \alpha_4 $	k4=0, k5=0,	
		40 2	k6=0, k7=1	
3	$\frac{\pi}{2} \leq \omega \leq \operatorname{arc} \operatorname{ctg} \left[\frac{2}{2} \cdot \left(\frac{d}{2} - \frac{1}{2} \right) \right]$	-	-	M ₁
	$6 = \varphi = an c c r s \left[\sqrt{3} \left(d + 2a 2\right)\right]$	$\alpha \leq \frac{9 \cdot \pi}{2}$	k1=0, k2=0,	M _{2Aa5}
		~~_ ₄₀	k3=1, k4=0	

		$\frac{9 \cdot \pi}{40} \le \alpha \le \frac{11 \cdot \pi}{40}$	k1=1, k2=0,	
		11.7 , 7	$k_{3}=0, k_{4}=0$	
		$\frac{1}{40} \leq \alpha \leq \frac{1}{2}$	$k_{1=0}^{k_{1}=0}, k_{2=0}^{k_{2}=0}, k_{3=0}^{k_{1}=0}, k_{4=1}^{k_{2}=0}$	
4	arc ctg $\left[\frac{2}{2} \cdot \left(\frac{d}{d} - \frac{1}{d}\right)\right] < \omega < \pi$		-	M ₁
	$\left[\sqrt{3} \left(\frac{d+2a}{2}\right)\right] = \psi = 0$		k1=0, k2=0,	M _{2Aa5}
			k3=0, k4=1	
5	$\pi/3 < \varphi \leq 2\pi/6$	$0 \le \alpha \le \pi/2$	k1=0, k2=1,	$M1+M_{2A}$
			k3=0, k3=0	

From the above considerations, it can be seen that each blade of the rotor goes through several states in relation to the direction of the wind vector during its working period. Since the angle between the blades is 1200, the working period of the rotor is returned in this range.

Since the rotor is two-stage, and the upper part enters the working position 600 later than the lower part, both parts of the rotor generate the same driving torque, only they are shifted by 600.

References:

- 1. D Ulugbek, T Yodgorjon. "Rotors Of Wind Aggregates and Their Construction Problems"//International Journal of Progressive Sciences and Technologies- (IJPSAT), 27(1),pp. 148-154, Vol.27 No.1 Junio 2021,. http://ijpsat.ijsht-journals.org9 ISSN: 2509-0119.
- 2. DU Gafurovich. "Analysis of the soulit and rezults of the defferentiolofequatio of wind agregate motion". Design Engineering journal, 2021. December, pp 5618-5627.https://www.design-enjineering=56185627.
- 3. Gafurovich D. U., Sotivoldievich Z. M. "The use of non-conventional power sources is a requirement of the period"//Academicia Globe: Inderscience Research. 2021. T. 2. №. 07. C. 121-126. ttps://doi.org/10.17605/OSF.IO/NXR3T
- 4. Dekhkonov Ulugbek, Tillaboev Yodgor, Orishov Utkirbek, Azamov Kodirjon. "Determining the optimal angular velocity of a vertical axis rotor wind unit". Jundishapur Journal of Microbiology Research Article Published online 2022 April Vol. 15, No.1 (2022) 3298. https://www.jjmicrobiol.com/index.php/jjm/article/view/492
- 5. Улуғбек Гофурович Деҳқонов, И.Б. Нажмиддинов, У. Г. Уришев. "Ротор ишчи қанотларини аниқлаш". Journal of Advanced Research and Stability. 2022, 199 б. ISSN: 2181-2608. www. sciencebox.uz/.
- 6. Улуғбек Ғофурович Деҳқонов, Ш.М. Исабоев, У. Г.Г. Уришев. "Ротор моментининг характеристикаси". Journal of Advanced Research and Stability. 2022, 205 б. ISSN: 2181-2608. www. sciencebox.uz/.
- 7. Улуғбек Ғофурович Деҳқонов, Ш.М. Исабоев, А.А. Абдужабборов. "Шамол агрегати фойдали қаршилик моментининг зарурий қиймати". Journal of Advanced Research and Stability. 2022, 205 б. ISSN: 2181-2608. www. sciencebox.uz/.
- 8. Махмудов З. С., Дехканов У. Г. "Повышение благосостояния народа-основная цель государства"//Электронный инновационный вестник. 2021. №. 3. С. 12-14.
- 9. Тиллабаев Ё. К. и др. ВОЗМОЖНОСТИ МАТНСАД ПРИ ОПРЕДЕЛЕНИИПЕРЕХОДНЫХ ПЕРЕХОДНЫХ ПРОЦЕССОВ //Научное знание современности. – 2017. – №. 6. – С. 122-125.
- 10. Едгоржон Кенжабоевич Тиллабоев. Последовательности точек в m-мерном Евклидовом пространстве. SCIENCE AND EDUCATION SCIENTIFIC JOURNAL. VOLUME 3, ISSUE 2 FEBRUARY 2022. стр. 28-39.